sin2θ+cos2θ=1
tanθ=cosθsinθ
cotθ=sinθcosθ
secθ=cosθ1
cscθ=sinθ1
sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
cot(−θ)=−cotθ
sec(−θ)=secθ
csc(−θ)=−cscθ
sin(θ+2kπ)=sinθ
cos(θ+2kπ)=cosθ
tan(θ+kπ)=tanθ
cot(θ+kπ)=cotθ
sec(θ+2kπ)=secθ
csc(θ+2kπ)=cscθ
其中k是任意整数。
sin2θ=2sinθcosθ
cos2θ=cos2θ−sin2θ
tan2θ=1−tan2θ2tanθ
sin(3A)=3sin(A)−4sin3(A)
cos(3A)=4cos3(A)−3cos(A)
sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβ∓sinαsinβ
tan(α±β)=1−tanαtanβtanα±tanβ
sin22θ=21−cosθ
cos22θ=21+cosθ
tan22θ=1+cosθ1−cosθ
sinA+sinB=2sin2A+Bcos2A−B
sinA−sinB=2cos2A+Bsin2A−B
cosA+cosB=2cos2A+Bcos2A−B
cosA−cosB=−2sin2A+Bsin2A−B
sinAcosB=21[sin(A+B)+sin(A−B)]
cosAsinB=21[sin(A+B)−sin(A−B)]
cosAcosB=21[cos(A+B)+cos(A−B)]
sinAsinB=−21[cos(A+B)−cos(A−B)]